REGISTRO_DATAFRAME¶
-
microbill.objects.
REGISTRO_DATAFRAME
= Cotización Fecha Nombre ... Aplicó Tipo de Pago Valor 0 U0619-0044 2019-11-03 12:50:25 Juan Barbosa ... Transferencia interna 194,300 1 U0619-0043 2019-11-02 17:14:24 Juan Barbosa ... Transferencia interna 194,300 2 C19-0016 2019-03-20 14:49:14 Paola Ruiz Puentes ... Transferencia interna 624,000 3 C19-0015 2019-03-19 16:36:24 Diana Marcela Castilla ... Factura 1,900,000 4 C19-0014 2019-03-12 18:46:03 Adriana Bernal ... Transferencia interna 1,164,800 5 C19-0013 2019-02-22 16:07:04 Laura Lorena Cardenas ... Transferencia interna 312,000 6 C19-0012 2019-02-20 14:01:15 Paula Andrea Guerrero ... Transferencia interna 208,000 7 C19-0011 2019-02-20 11:42:49 Angela Johana Espejo Mojica ... Factura 416,000 8 C19-0010 2019-02-21 13:28:06 Ruth Dayana Hernandez Reyes ... Transferencia interna 2,392,000 9 C19-0009 2019-02-19 12:26:49 Diana Marcela Gutierrez Saldaña ... Factura 3,000,000 10 C19-0008 2019-03-20 11:03:43 Andrés Baquero ... Factura 1,720,000 11 C19-0007 2019-02-06 14:35:06 Juliana Carolina Montoya Bohórquez ... Transferencia interna 104,000 12 C19-0006 2019-02-05 10:56:16 Andreas Reiber ... Transferencia interna 97,500 13 C19-0005 2019-02-04 09:51:04 Amalia Murgueitio Calle ... Transferencia interna 650,000 14 C19-0004 2019-02-01 15:56:56 Nicolas Estrada Mejia ... Transferencia interna 208,000 15 C19-0003 2019-03-04 09:21:30 Paula Andrea Guerrero ... Transferencia interna 1,768,000 16 C19-0002 2019-01-22 16:39:56 Juan Carlos Cruz Jimenez ... Transferencia interna 1,248,000 17 C19-0001 2019-01-21 16:01:50 Sara Paredes Echeverri ... Transferencia interna 195,000 18 C18-0057 2018-11-28 14:35:15 Dory Lineth Gomez ... Recibo 688,000 19 C18-0056 2018-11-23 10:27:37 Esteban Cespedes Diaz ... Transferencia interna 65,000 20 C18-0055 2018-11-01 15:32:59 Juan Barbosa ... Transferencia interna 65,000 21 C18-0054 2018-10-25 14:00:43 Juan Carlos Cruz Jimenez ... Transferencia interna 832,000 22 C18-0053 2018-10-11 16:18:22 Andrea Tobian Herreño ... Transferencia interna 104,000 23 C18-0052 2018-09-28 17:14:07 Laura Lorena Cardenas ... Transferencia interna 104,000 24 C18-0051 2018-10-08 12:11:20 Laura Lorena Cardenas ... Transferencia interna 1,040,000 25 C18-0050 2018-10-03 13:22:17 Alba Avila ... Laura Sotelo Transferencia interna 208,000 26 C18-0049 2018-09-17 17:10:32 Alba Avila ... Transferencia interna 208,000 27 C18-0048 2018-09-17 15:25:21 Andreas Reiber ... Transferencia interna 104,000 28 C18-0047 2018-09-10 16:41:04 Christian Camilo Falla Pinilla ... Transferencia interna 832,000 29 C18-0046 2018-09-10 14:08:44 Christian Camilo Falla Pinilla ... Transferencia interna 1,040,000 .. ... ... ... ... ... ... ... 766 0219-0024 2019-04-29 12:00:24 Viviana Lizeth Olaya Pinzón ... Recibo 95,000 767 0219-0023 2019-04-29 10:31:05 Vicente Benavides ... Factura 104,000 768 0219-0022 2019-04-25 15:15:39 Mauricio Galeano ... Transferencia interna 45,000 769 0219-0021 2019-04-24 14:41:32 Andres Ricardo Velasco Gonzalez ... Transferencia interna 45,000 770 0219-0020 2019-04-22 16:43:59 Juan Sebastian Woodcock ... Transferencia interna 45,000 771 0219-0019 2019-04-22 16:39:01 Angelica Chica Segovia ... Factura 475,000 772 0219-0018 2019-04-22 16:00:12 Omar Steven Castaño ... Recibo 208,000 773 0219-0017 2019-04-22 15:04:01 Andrés Baquero ... Transferencia interna 380,000 774 0219-0016 2019-04-22 08:28:29 Johana Andrea Barrera Gonzalez ... Transferencia interna 45,000 775 0219-0015 2019-04-12 15:44:45 Mariana Gutierrez ... Transferencia interna 45,000 776 0219-0014 2019-04-12 10:28:05 Francisco Ibla ... Recibo 95,000 777 0219-0013 2019-04-11 14:46:10 Pablo Emilio Realpe ... Transferencia interna 45,000 778 0219-0012 2019-04-11 14:29:48 Pablo Emilio Realpe ... Transferencia interna 90,000 779 0219-0011 2019-04-09 15:13:06 Carlos Rafael Castillo Saldarriaga ... Factura 415,000 780 0219-0010 2019-04-04 09:06:09 Amalia Murgueitio Calle ... Transferencia interna 270,000 781 0219-0009 2019-04-03 11:47:26 diego andres barrero rosero ... Transferencia interna 90,000 782 0219-0008 2019-04-01 17:01:16 Paula Andrea Guerrero Barragán ... Transferencia interna 103,000 783 0219-0007 2019-04-01 11:11:54 Alejandro Arellano Ayala ... Transferencia interna 600,000 784 0219-0006 2019-03-29 14:57:12 Lizeth Xiomara Vargas Rincon ... Transferencia interna 195,000 785 0219-0005 2019-03-28 16:14:41 Lizeth Xiomara Vargas Rincon ... Transferencia interna 39,000 786 0219-0004 2019-03-26 10:09:12 Francisco Ibla ... Recibo 64,000 787 0219-0003 2019-03-22 15:52:08 Mario Omar Fernández ... Recibo 64,000 788 0219-0002 2019-03-22 15:34:36 Mario Omar Fernández ... Transferencia interna 39,000 789 0219-0001 2019-03-22 09:48:29 Marylin Hidalgo ... Factura 222,000 790 0119-0006 2019-09-08 19:25:03 Juan Barbosa ... Transferencia interna 20,000 791 0119-0005 2019-09-08 19:24:45 Juan Barbosa ... Transferencia interna 20,000 792 0119-0004 2019-09-08 19:24:27 Juan Barbosa ... Transferencia interna 20,000 793 0119-0003 2019-09-08 19:20:30 Juan Barbosa ... Transferencia interna 20,000 794 0119-0002 2019-09-08 19:14:56 Juan Barbosa ... Transferencia interna 20,000 795 0119-0001 2019-09-08 19:13:02 Juan Barbosa ... Transferencia interna 20,000 [796 rows x 18 columns]¶ Two-dimensional size-mutable, potentially heterogeneous tabular data structure with labeled axes (rows and columns). Arithmetic operations align on both row and column labels. Can be thought of as a dict-like container for Series objects. The primary pandas data structure.
- Parameters
- datanumpy ndarray (structured or homogeneous), dict, or DataFrame
Dict can contain Series, arrays, constants, or list-like objects
Distinto en la versión 0.23.0: If data is a dict, argument order is maintained for Python 3.6 and later.
- indexIndex or array-like
Index to use for resulting frame. Will default to RangeIndex if no indexing information part of input data and no index provided
- columnsIndex or array-like
Column labels to use for resulting frame. Will default to RangeIndex (0, 1, 2, …, n) if no column labels are provided
- dtypedtype, default None
Data type to force. Only a single dtype is allowed. If None, infer
- copyboolean, default False
Copy data from inputs. Only affects DataFrame / 2d ndarray input
Ver también
DataFrame.from_records
constructor from tuples, also record arrays
DataFrame.from_dict
from dicts of Series, arrays, or dicts
DataFrame.from_items
from sequence of (key, value) pairs
pandas.read_csv
,pandas.read_table
,pandas.read_clipboard
Examples
Constructing DataFrame from a dictionary.
>>> d = {'col1': [1, 2], 'col2': [3, 4]} >>> df = pd.DataFrame(data=d) >>> df col1 col2 0 1 3 1 2 4
Notice that the inferred dtype is int64.
>>> df.dtypes col1 int64 col2 int64 dtype: object
To enforce a single dtype:
>>> df = pd.DataFrame(data=d, dtype=np.int8) >>> df.dtypes col1 int8 col2 int8 dtype: object
Constructing DataFrame from numpy ndarray:
>>> df2 = pd.DataFrame(np.random.randint(low=0, high=10, size=(5, 5)), ... columns=['a', 'b', 'c', 'd', 'e']) >>> df2 a b c d e 0 2 8 8 3 4 1 4 2 9 0 9 2 1 0 7 8 0 3 5 1 7 1 3 4 6 0 2 4 2